An improved cluster model selection method for agglomerative hierarchical speaker clustering using incremental Gaussian mixture models
نویسندگان
چکیده
In this paper, we improve our previous cluster model selection method for agglomerative hierarchical speaker clustering (AHSC) based on incremental Gaussian mixture models (iGMMs). In the previous work, we measured the likelihood of all the data points in a given cluster for each mixture component of the GMM modeling the cluster. Then, we selected the N -best component Gaussians with the highest likelihoods to make the GMM refined for the purpose of better cluster representation. N was chosen empirically then, but it is difficult to set an optimal N universally in general. In this work, we propose an improved method to adaptively select component Gaussians from the GMM considered, by measuring the degree of representativeness of each Gaussian component, which we define in this paper. Experiments on two data sets including 17 meeting speech excerpts verify that the proposed approach improves the overall clustering performance by approximately 20% and 10% (relative), respectively, compared to the previous method.
منابع مشابه
Signature cluster model selection for incremental Gaussian mixture cluster modeling in agglomerative hierarchical speaker clustering
Agglomerative hierarchical speaker clustering (AHSC) has been widely used for classifying speech data by speaker characteristics. Its bottom-up, one-way structure of merging the closest cluster pair at every recursion step, however, makes it difficult to recover from incorrect merging. Hence, making AHSC robust to incorrect merging is an important issue. In this paper we address this problem in...
متن کاملAgglomerative hierarchical speaker clustering using incremental Gaussian mixture cluster modeling
This paper proposes a novel cluster modeling method for intercluster distance measurement within the framework of agglomerative hierarchical speaker clustering, namely, incremental Gaussian mixture cluster modeling. This method uses a single Gaussian distribution to model each initial cluster, but represents any newly merged cluster using a distribution whose pdf is the weighted sum of the pdf’...
متن کاملAn online incremental speaker adaptation method using speaker-clustered initial models
We previously proposed an incremental speaker adaptation method combined with automatic speaker-change detection for broadcast news transcription where speakers change frequently and each of them utters a series of several sentences. In this method, the speaker change is detected using speaker-independent and speaker-adaptive Gaussian mixture models (GMMs). Both phone HMMs and GMMs are incremen...
متن کاملEfficient Text-Independent Speaker Identification using Optimized Hierarchical Mixture Clustering
Conventional Speaker Identification(SI) Systems uses individual Gaussian Mixture Models(GMM) for every speaker. If this method used for the large population Speaker identification systems, then during identification, likelihood computations between an unknown speaker's test feature vectors and speaker models has become a time-consuming process. This approach also increases the computationa...
متن کاملA sampling-based speaker clustering using utterance-oriented Dirichlet process mixture model and its evaluation on large scale data
An infinite mixture model is applied to model-based speaker clustering with sampling-based optimization to make it possible to estimate the number of speakers. For this purpose, a framework of non-parametric Bayesian modeling is implemented with the Markov chain Monte Carlo and incorporated in the utterance-oriented speaker model. The proposed model is called the utterance-oriented Dirichlet pr...
متن کامل